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Solitary waves in a finite depth fluid 

R I Joseph 
Department of Electrical Engineering, The Johns Hopkins University, Baltimore, 
Maryland 21218, USA 

Received 6 September 1977 

Abstract. It is shown that U([)= uo[cosh2 sinh2 &I-’ is the exact stationary 
wave solution to the Whitham equation in a two-layer fluid of finite depth and represents 
the natural connection between the Benjamin-Ono deep water (a + 0) and Korteweg-de 
Vries shallow water (b +a) theories. 

The stream function characterising the propagation of a weakly non-linear finite 
amplitude disturbance in a fluid of total depth D can be written in the form 4(x, z ,  t )  = 
coq5(z)u(x, t ) .  The functions q5 and u are obtained by solution of (Whitham 1967) 

-+ d2+ (7- N 2 ( z )  k2 )Q = 0 
dz2  c (k )  

and 
00 w+ cu ( x )  - +- a I dx‘u(x’)G(x’-x)=O, 

at ax ax -m 

1 
G(x) = - J dk c ( k )  eikx, 

27r -00 

subject to the boundary conditions q5(0) = +(-D) = 0 and u + 0 for 1x1 + 00. N ( z )  is 
the Brunt-Vaisala frequency, C a parameter characterising the non-linearity and c (k) 
the phase speed dispersion. Consider a model fluid in which N*(z)  is zero outside of a 
small range E centred at z = -d. For this ‘thin thermocline model’, solution of 
equation (1) yields (Phillips 1966) 

c 2 ( k ) =  g(*)l[k{kc +coth(kd)+coth[k(D - d ) ] } ] - ’ ,  
Po 

(3) 

where Sp denotes the difference in densities between the lower and upper layers and 
po is their mean value. For small enough k-values, neglecting ke, one finds that 
c ( k ) - c o - k 2  for finite D whereas c(k) -co- lk l  for D infinite. Substitution of these 
limiting forms into equation (2) yields the Korteweg-de Vries (KDV) (Benjamin 1966) 
and Benjamin-Ono (BO) (Benjamin 1967, Ono 1975) equations, respectively, cor- 
responding to what are denoted ‘shallow’ and ‘infinitely deep’ water theories. 
Restricting attention to stationary wave solutions, U(X, t )  = U((), ( = x - cf, c being 
the constant wave speed, allows one to directly integrate equation (2) once: 

m 

cu(5)-$Cu2(5)-  5 d(’ u(( ‘ )G( ( ‘ - ( )=O.  
-m 

(4) 
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The solutions to this equation in the KDV and BO limits are well known: 

U ( 5 ) b  = UO sech2(aZ'), c -co = 4Cuo; (5a)  

4 5 ) l B O  = Uo[ 1 + ($)'I-', c -CO = icuo. 

The purpose of the present Letter is to exhibit the comparably simple solution for 
D finite. For simplicity we assume that E << d << D, but D finite. For this situation the 
small -k  form of equation (3) becomes 

where co = (gd Sp/po)"2. We are led in our search for a solution to equation (4) for the 
c ( k )  given in equation (6) by the fact that as D +CO it should yield for U([) the result 
given by equation (5b)  whereas for D + 0 we expect the U(&) of equation (5a). The 
function ~ ( 5 )  which we seek depends on two parameters, a and b, and is given by 

(7) 
U0 

" b)'cosh2(a~)+{[sinh(a~/a]z/b2}' 

When a '0, b, 5 finite, this function becomes identical with that given in equation 
(5b)  while for b + 0, a, 5 finite, it becomes identical to that given in equation (sa). 
When 161 +CO, a, b finite, we find 

~ ( 5 ;  U, b)-4Uo[l e+'", (8 ) 

so that if a + 0, U decays exponentially just as the KDV solution, in contrast to the 
algebraic decay (+*) of the BO solution (a = 0). 

Although it can be verified that equation (7) represents a solution to equations (2), 
(4) and (6) by direct substitution, it is easier to show this by first Fourier inverting 
equation (4) to the form 

To evaluate these integrals we rewrite equation (7) in the equivalent form 

U([; a, b ) =  2B[cos S+cosh(2a~)]-', 

with 

B = uOP(P + l)-', cos S = ( P -  1)(P+ l)-I 

and P = (ab)'. The required integrals are now elementary and direct substitution of 
equation (10) into equation (9) gives 

c(k)=co-BCcosecS - coth - -- (23 (3 ;;I 
where c = CO- BC cosec S(cot S-SA*). Equations (12) and (6) are identical if we 
make the identifications 

S = 2aD, BC = coda sin S, (13) 



Letter to the Editor L227 

whence verifying that the U given in equation (7) is the desired solution. The 
parameters UO, a,b are directly related to the parameters CO, C, d, D by 

uob = 2codlC U tan(aD) = b-'. (14) 
Making use of the result C = 3co/2d (Benjamin 1967) we have uob = 4d2/3. The 
deviation of the wave speed c from CO is then given by 

d D  
CO 1 =- 2 0  d [1-2aD cot(2aD)J=-( 2 0  1+6(1 - a q .  C -- 

Defining a linewidth A for the solution by its full width at its half-peak value, it is given 
by 

Finally, the total area under the solution, A, is given by 

A = 2abuJJ = 8adZD/3. 

If D + 00, then 
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